Учебник по Алгебре для 9-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.
Что выделяет этот учебник среди других:
- Понятное изложение материала. Каждая тема объясняется простым и доступным языком, что облегчает понимание даже сложных понятий.
- Большое количество примеров и задач. Учебник предлагает разнообразные упражнения — от простых до более сложных, что помогает закрепить пройденный материал.
- Интерактивный подход. В книге есть задания, которые побуждают учеников к самостоятельному поиску решений и развитию творческого мышления.
- Связь с реальной жизнью. Многие задачи связаны с практическими ситуациями, что делает математику более живой и понятной.
- Разнообразие форм подачи информации. Здесь используются таблицы, схемы, иллюстрации, что помогает лучше усваивать материал и удерживать внимание учащихся.
ГДЗ по Алгебре 9 Класс Номер 79 Дорофеев, Суворова — Подробные Ответы
Действуем по алгоритму. Решите неравенство.
а)
б)
в)
г)
д)
е)
ж)
з)
и)
к)
л)
м)
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
г);
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
и)
;
;
;
;
к)
;
;
;
;
;
л) ;
;
;
;
;
м) ;
;
;
;
а)
Начнем с того, что нам нужно решить неравенство. Для этого мы будем поочередно преобразовывать его, применяя основные свойства неравенств.
Первый шаг: вычитаем 2 из обеих частей неравенства. Это делаем, чтобы изолировать выражение с переменной на одной стороне.
Теперь у нас есть выражение с в левой части.
Второй шаг: делим обе части неравенства на 5. Мы можем это сделать, так как 5 положительно, и знак неравенства не изменится.
б)
Начнем с того, чтобы решить неравенство для .
Первый шаг: добавим 3 к обеим частям неравенства, чтобы избавиться от постоянного слагаемого слева.
Второй шаг: делим обе части неравенства на 2. Мы делим на положительное число, поэтому знак неравенства сохраняется.
в)
Здесь у нас есть дробное выражение с переменной , и нам нужно избавиться от постоянного слагаемого.
Первый шаг: вычитаем 2 из обеих частей неравенства, чтобы изолировать дробь с .
Второй шаг: умножаем обе части неравенства на 2, чтобы избавиться от знаменателя. Поскольку 2 положительно, знак неравенства не изменится.
г)
Начнем с того, чтобы избавиться от постоянного слагаемого .
Первый шаг: добавляем 1 к обеим частям неравенства.
Второй шаг: умножаем обе части неравенства на 3, чтобы избавиться от знаменателя. Поскольку 3 положительно, знак неравенства не изменится.
д)
Здесь нам нужно решить неравенство для .
Первый шаг: вычитаем 6 из обеих частей неравенства.
Второй шаг: делим обе части неравенства на , что приводит к изменению знака неравенства, так как мы делим на отрицательное число.
е)
Начнем с того, чтобы решить неравенство для .
Первый шаг: прибавляем 2 к обеим частям неравенства.
Второй шаг: делим обе части неравенства на . Поскольку мы делим на отрицательное число, знак неравенства изменится.
ж)
Начнем с того, чтобы решить неравенство для .
Первый шаг: добавляем 7 к обеим частям неравенства.
Второй шаг: делим обе части неравенства на 5. Поскольку 5 положительно, знак неравенства сохраняется.
з)
Начнем с того, чтобы решить неравенство для .
Первый шаг: прибавляем 5 к обеим частям неравенства.
Второй шаг: делим обе части неравенства на 3. Поскольку 3 положительно, знак неравенства сохраняется.
и)
Начнем с того, чтобы решить неравенство для .
Первый шаг: добавляем 1 к обеим частям неравенства.
Второй шаг: делим обе части неравенства на . Поскольку мы делим на отрицательное число, знак неравенства изменится.
к)
Начнем с того, чтобы решить неравенство для .
Первый шаг: вычитаем 7 из обеих частей неравенства.
Второй шаг: умножаем обе части неравенства на . Поскольку мы умножаем на отрицательное число, знак неравенства изменится.
л)
Начнем с того, чтобы решить неравенство для .
Первый шаг: вычитаем 15 из обеих частей неравенства.
Второй шаг: умножаем обе части неравенства на . Поскольку мы умножаем на отрицательное число, знак неравенства изменится.
м)
Начнем с того, чтобы решить неравенство для .
Первый шаг: вычитаем 1 из обеих частей неравенства.
Второй шаг: умножаем обе части неравенства на 8. Поскольку 8 положительно, знак неравенства не изменится.
Алгебра