1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ по Алгебре 8 Класс Учебник 📕 Дорофеев, Суворова — Все Части
Алгебра
8 класс учебник Дорофеев
8 класс
Тип
ГДЗ, Решебник.
Авторы
Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. и др.
Год
2022.
Издательство
Просвещение.
Описание

Учебник по Алгебре для 8-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.

Что выделяет этот учебник среди других:

  1. Понятное изложение материала. Каждая тема объясняется простым и доступным языком, что облегчает понимание даже сложных понятий.
  2. Большое количество примеров и задач. Учебник предлагает разнообразные упражнения — от простых до более сложных, что помогает закрепить пройденный материал.
  3. Интерактивный подход. В книге есть задания, которые побуждают учеников к самостоятельному поиску решений и развитию творческого мышления.
  4. Связь с реальной жизнью. Многие задачи связаны с практическими ситуациями, что делает математику более живой и понятной.
  5. Разнообразие форм подачи информации. Здесь используются таблицы, схемы, иллюстрации, что помогает лучше усваивать материал и удерживать внимание учащихся.

ГДЗ по Алгебре 8 Класс Номер 737 Дорофеев, Суворова — Подробные Ответы

Задача

а) Автомобиль должен проехать 600 км. Двигаясь со скоростью v км/ч, он затратит на этот путь t ч. Задайте формулой время движения t как функцию скорости v. Найдите время движения, если скорость движения равна 40 км/ч; 60 км/ч; 80 км/ч. Найдите скорость движения, если время движения равно 5 ч; 6 ч; 8 ч.
б) Бассейн наполняется водой с помощью насоса, через который вода поступает со скоростью 20 л в минуту. За t мин в бассейн наливается V л воды. Задайте формулой зависимость V от t. Найдите значение функции V при значении аргумента t, равном 5; 10; 12,5. Найдите значение аргумента t, которому соответствует значение функции V, равное 60; 150; 340.

Краткий ответ:

а) s=vts = vt,
s=600кмs = 600 \, \text{км}.

  • t=svt = \frac{s}{v};
    при v=40км/чv = 40 \, \text{км/ч}:

    t=60040=15(ч).t = \frac{600}{40} = 15 \, (\text{ч}).при v=60км/чv = 60 \, \text{км/ч}:

    t=60060=10(ч).t = \frac{600}{60} = 10 \, (\text{ч}).при v=80км/чv = 80 \, \text{км/ч}:

    t=60080=608=7.5(ч).t = \frac{600}{80} = \frac{60}{8} = 7.5 \, (\text{ч}).

  • v=stv = \frac{s}{t};
    при t=5чt = 5 \, \text{ч}:

    v=6005=120(км/ч).v = \frac{600}{5} = 120 \, (\text{км/ч}).при t=6чt = 6 \, \text{ч}:

    v=6006=100(км/ч).v = \frac{600}{6} = 100 \, (\text{км/ч}).при t=8чt = 8 \, \text{ч}:

    v=6008=75(км/ч).v = \frac{600}{8} = 75 \, (\text{км/ч}).

б) V=vtV = vt,
v=20л/минv = 20 \, \text{л/мин}.

  • V=vtV = vt;
    при t=5минt = 5 \, \text{мин}:

    V=205=100(л).V = 20 \cdot 5 = 100 \, (\text{л}).при t=10минt = 10 \, \text{мин}:

    V=2010=200(л).V = 20 \cdot 10 = 200 \, (\text{л}).при t=12.5минt = 12.5 \, \text{мин}:

    V=2012.5=250(л).V = 20 \cdot 12.5 = 250 \, (\text{л}).

  • t=Vvt = \frac{V}{v};
    при V=60лV = 60 \, \text{л}:

    t=6020=3(мин).t = \frac{60}{20} = 3 \, (\text{мин}).при V=150лV = 150 \, \text{л}:

    t=15020=7.5(мин).t = \frac{150}{20} = 7.5 \, (\text{мин}).при V=340лV = 340 \, \text{л}:

    t=34020=17(мин).t = \frac{340}{20} = 17 \, (\text{мин}).

Подробный ответ:

а) Расчет времени для разных скоростей

Для данной задачи, у нас есть расстояние s=600кмs = 600 \, \text{км}, и нам нужно найти время tt для различных скоростей.

Шаг 1: Формула для нахождения времени:

t=sv,t = \frac{s}{v},

где tt — время, ss — расстояние, vv — скорость.

  • При скорости v=40км/чv = 40 \, \text{км/ч}:

    t=60040=15ч.t = \frac{600}{40} = 15 \, \text{ч}.

    Это значит, что на прохождение расстояния в 600 км при скорости 40 км/ч потребуется 15 часов.

  • При скорости v=60км/чv = 60 \, \text{км/ч}:

    t=60060=10ч.t = \frac{600}{60} = 10 \, \text{ч}.

    При скорости 60 км/ч время сокращается до 10 часов.

  • При скорости v=80км/чv = 80 \, \text{км/ч}:

    t=60080=7.5ч.t = \frac{600}{80} = 7.5 \, \text{ч}.

    При скорости 80 км/ч время будет еще меньше и составит 7.5 часов.

Шаг 2: Для нахождения скорости, зная время, используем формулу:

v=st.v = \frac{s}{t}.

  • При t=5чt = 5 \, \text{ч}:

    v=6005=120км/ч.v = \frac{600}{5} = 120 \, \text{км/ч}.

    Если расстояние 600 км преодолевается за 5 часов, то скорость составит 120 км/ч.

  • При t=6чt = 6 \, \text{ч}:

    v=6006=100км/ч.v = \frac{600}{6} = 100 \, \text{км/ч}.

    За 6 часов, при этом же расстоянии, скорость составит 100 км/ч.

  • При t=8чt = 8 \, \text{ч}:

    v=6008=75км/ч.v = \frac{600}{8} = 75 \, \text{км/ч}.

    При времени 8 часов, скорость составит 75 км/ч.

б) Расчет объема жидкости за время

В данном случае скорость равна v=20л/минv = 20 \, \text{л/мин}, и нам нужно рассчитать объем жидкости за определенные промежутки времени.

Шаг 1: Формула для нахождения объема:

V=vt,V = v \cdot t,

где VV — объем, vv — скорость (в данном случае 20л/мин20 \, \text{л/мин}), tt — время.

  • При t=5минt = 5 \, \text{мин}:

    V=205=100л.V = 20 \cdot 5 = 100 \, \text{л}.За 5 минут при скорости 20 л/мин объем жидкости составит 100 литров.

  • При t=10минt = 10 \, \text{мин}:

    V=2010=200л.V = 20 \cdot 10 = 200 \, \text{л}.За 10 минут при той же скорости объем составит 200 литров.

  • При t=12.5минt = 12.5 \, \text{мин}:

    V=2012.5=250л.V = 20 \cdot 12.5 = 250 \, \text{л}.За 12,5 минут объем будет равен 250 литров.

Шаг 2: Для нахождения времени, зная объем, используем формулу:

t=Vv.t = \frac{V}{v}.

  • При V=60лV = 60 \, \text{л}:

    t=6020=3мин.t = \frac{60}{20} = 3 \, \text{мин}.Чтобы получить 60 литров жидкости, при скорости 20 л/мин потребуется 3 минуты.

  • При V=150лV = 150 \, \text{л}:

    t=15020=7.5мин.t = \frac{150}{20} = 7.5 \, \text{мин}.Для получения 150 литров жидкости потребуется 7.5 минут.

  • При V=340лV = 340 \, \text{л}:

    t=34020=17мин.t = \frac{340}{20} = 17 \, \text{мин}.Для 340 литров потребуется 17 минут.


Алгебра

Общая оценка
4.8 / 5
Комментарии
Другие предметы