1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ по Алгебре 8 Класс Учебник 📕 Дорофеев, Суворова — Все Части
Алгебра
8 класс учебник Дорофеев
8 класс
Тип
ГДЗ, Решебник.
Авторы
Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. и др.
Год
2022.
Издательство
Просвещение.
Описание

Учебник по Алгебре для 8-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.

Что выделяет этот учебник среди других:

  1. Понятное изложение материала. Каждая тема объясняется простым и доступным языком, что облегчает понимание даже сложных понятий.
  2. Большое количество примеров и задач. Учебник предлагает разнообразные упражнения — от простых до более сложных, что помогает закрепить пройденный материал.
  3. Интерактивный подход. В книге есть задания, которые побуждают учеников к самостоятельному поиску решений и развитию творческого мышления.
  4. Связь с реальной жизнью. Многие задачи связаны с практическими ситуациями, что делает математику более живой и понятной.
  5. Разнообразие форм подачи информации. Здесь используются таблицы, схемы, иллюстрации, что помогает лучше усваивать материал и удерживать внимание учащихся.

ГДЗ по Алгебре 8 Класс Номер 707 Дорофеев, Суворова — Подробные Ответы

Задача

Постройте график уравнения:
а) (x-2y)(x+2y)=0;
б) (x+5)(y-3)=0;
в) (x-1)(x+2)=0;
г) (y+1)(y+4)=0.

Краткий ответ:

а) (x2y)(x+2y)=0(x — 2y)(x + 2y) = 0

x2y=0x — 2y = 0

x=2yx = 2y y=x2y = \frac{x}{2}

x+2y=0x + 2y = 0

2y=x

2y = -x y=x2y = -\frac{x}{2}

б) (x+5)(y3)=0(x + 5)(y — 3) = 0

x+5=0x + 5 = 0

x=5x = -5

y3=0y — 3 = 0

y=3

y = 3

в) (x1)(x+2)=0(x — 1)(x + 2) = 0

x1=0x — 1 = 0

x=1x = 1

x+2=0x + 2 = 0

x=2x = -2

г) (y+1)(y+4)=0(y + 1)(y + 4) = 0

y+1=0y + 1 = 0

y=1y = -1

y+4=0y + 4 = 0

y=4

y = -4

Подробный ответ:

а) (x2y)(x+2y)=0(x — 2y)(x + 2y) = 0

Это произведение двух выражений, и для того, чтобы произведение было равно нулю, хотя бы одно из множителей должно быть равно нулю. Разберём каждое из этих уравнений.

x2y=0x — 2y = 0

Решаем для xx или yy:

x=2yx = 2y y=x2y = \frac{x}{2}

x+2y=0x + 2y = 0

Решаем для xx или yy:

2y=x2y = -x y=x2y = -\frac{x}{2}

Ответ: Решения для xx и yy могут быть:

y=x2y = \frac{x}{2} или

y=x2y = -\frac{x}{2}.

б) (x+5)(y3)=0(x + 5)(y — 3) = 0

Здесь произведение также равно нулю, следовательно, хотя бы одно из выражений x+5=0x + 5 = 0 или y3=0y — 3 = 0 должно быть равно нулю.

x+5=0x + 5 = 0

Решаем для xx:

x=5x = -5

y3=0y — 3 = 0

Решаем для yy:

y=3y = 3

Ответ: Возможные значения для xx и yy:

x=5x = -5 или

y=3y = 3.

в) (x1)(x+2)=0(x — 1)(x + 2) = 0

Точно так же, как и в предыдущем случае, произведение двух выражений равно нулю, значит, одно из выражений должно быть равно нулю.

x1=0x — 1 = 0

Решаем для xx:

x=1x = 1

x+2=0x + 2 = 0

Решаем для xx:

x=2x = -2

Ответ: Возможные значения для xx:

x=1x = 1 или

x=2x = -2.

г) (y+1)(y+4)=0(y + 1)(y + 4) = 0

Здесь также произведение двух выражений равно нулю, значит, хотя бы одно из выражений должно быть равно нулю.

y+1=0y + 1 = 0

Решаем для yy:

y=1y = -1

y+4=0y + 4 = 0

Решаем для yy:

y=4y = -4

Ответ: Возможные значения для yy:

  • y=1y = -1 или
  • y=4y = -4.


Алгебра

Общая оценка
3.7 / 5
Комментарии
Другие предметы