Учебник по Алгебре для 8-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.
Что выделяет этот учебник среди других:
- Понятное изложение материала. Каждая тема объясняется простым и доступным языком, что облегчает понимание даже сложных понятий.
- Большое количество примеров и задач. Учебник предлагает разнообразные упражнения — от простых до более сложных, что помогает закрепить пройденный материал.
- Интерактивный подход. В книге есть задания, которые побуждают учеников к самостоятельному поиску решений и развитию творческого мышления.
- Связь с реальной жизнью. Многие задачи связаны с практическими ситуациями, что делает математику более живой и понятной.
- Разнообразие форм подачи информации. Здесь используются таблицы, схемы, иллюстрации, что помогает лучше усваивать материал и удерживать внимание учащихся.
ГДЗ по Алгебре 8 Класс Номер 652 Дорофеев, Суворова — Подробные Ответы
Решите систему уравнений, применив любой из известных вам способов:
а) {(3m+4n=7
2m+n=8)+
б) {(x-2y=3
5x+y=4)+
в) {(5a+2b=15
8a+3b=-1)+
г) {(5p-4q=3
2p-3q=11)+
д) {(8x-2y=14
9x+4y=-3)+
е) {(3y-z=5
5y+2z=12)+
а)
Ответ: ; .
б)
Ответ: ; .
в)
Ответ: ; .
г)
Ответ: ; .
д)
Ответ: ; .
е)
Ответ: ; .
а) Система уравнений:
Шаг 1: Из второго уравнения выразим через :
Шаг 2: Подставим полученное выражение для во первое уравнение:
Шаг 3: Раскроем скобки:
Шаг 4: Переносим все слагаемые с в одну сторону:
Шаг 5: Вычитаем 32 из обеих сторон:
Шаг 6: Разделим обе части уравнения на :
Шаг 7: Подставим найденное значение в выражение для :
Ответ: ; .
б) Система уравнений:
Шаг 1: Из первого уравнения выразим через :
Шаг 2: Подставим это выражение для во второе уравнение:
Шаг 3: Раскроем скобки:
Шаг 4: Сложим подобные члены:
Шаг 5: Вычитаем 15 из обеих сторон:
Шаг 6: Разделим обе части уравнения на 11:
Шаг 7: Подставим в выражение для :
Ответ: ; .
в) Система уравнений:
Шаг 1: Умножим первое уравнение на 3 и второе на 2:
Шаг 2: Вычтем первое уравнение из второго, чтобы устранить :
Шаг 3: Подставим в первое уравнение:
Шаг 4: Прибавим 235 к обеим частям уравнения:
Шаг 5: Разделим обе части уравнения на 2:
Ответ: ; .
г) Система уравнений:
Шаг 1: Умножим первое уравнение на 2 и второе на 5:
Шаг 2: Вычтем первое уравнение из второго:
Шаг 3: Разделим обе части уравнения на :
Шаг 4: Подставим во второе уравнение:
Шаг 5: Вычитаем 21 из обеих частей уравнения:
Шаг 6: Разделим обе части уравнения на 2:
Ответ: ; .
д) Система уравнений:
Шаг 1: Разделим первое уравнение на 2:
Шаг 2: Из первого уравнения выразим через :
Шаг 3: Подставим выражение для во второе уравнение:
Шаг 4: Раскроем скобки:
Шаг 5: Сложим подобные члены:
Шаг 6: Прибавим 28 к обеим частям уравнения:
Шаг 7: Разделим обе части уравнения на 25:
Шаг 8: Подставим в выражение для :
Ответ: ; .
е) Система уравнений:
Шаг 1: Из первого уравнения выразим через :
Шаг 2: Подставим это выражение во второе уравнение:
Шаг 3: Раскроем скобки:
Шаг 4: Сложим подобные члены:
Шаг 5: Прибавим 10 к обеим частям уравнения:
Шаг 6: Разделим обе части уравнения на 11:
Шаг 7: Подставим в выражение для :
Ответ: ; .
Алгебра