1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ по Алгебре 8 Класс Учебник 📕 Дорофеев, Суворова — Все Части
Алгебра
8 класс учебник Дорофеев
8 класс
Тип
ГДЗ, Решебник.
Авторы
Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. и др.
Год
2022.
Издательство
Просвещение.
Описание

Учебник по Алгебре для 8-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.

Что выделяет этот учебник среди других:

  1. Понятное изложение материала. Каждая тема объясняется простым и доступным языком, что облегчает понимание даже сложных понятий.
  2. Большое количество примеров и задач. Учебник предлагает разнообразные упражнения — от простых до более сложных, что помогает закрепить пройденный материал.
  3. Интерактивный подход. В книге есть задания, которые побуждают учеников к самостоятельному поиску решений и развитию творческого мышления.
  4. Связь с реальной жизнью. Многие задачи связаны с практическими ситуациями, что делает математику более живой и понятной.
  5. Разнообразие форм подачи информации. Здесь используются таблицы, схемы, иллюстрации, что помогает лучше усваивать материал и удерживать внимание учащихся.

ГДЗ по Алгебре 8 Класс Номер 215 Дорофеев, Суворова — Подробные Ответы

Задача

а)−12a2b332a2b3-\frac{1}{2}a^2b^3 \cdot \frac{3}{2}a^{-2}b^{-3}

б)(2m1n)28m5n(2m^{-1}n)^{-2} \cdot 8m^{-5}n

в)10x1y100,05x3y1010x^{-1}y^{-10} \cdot 0,05x^3y^{-10}

г)3p4q3(3pq3)13p^4q^{-3} \cdot (3pq^{-3})^{-1}

Краткий ответ:

а)
12a2b332a2b3=1232a22b33=34a0b0=34.

б)
10x1y100.05x3y10=100.05x1+3y1010=0.5x2y20.

в)
(2m3n)28m5n=1(2m3n)28m5n=14m6n28nm5=8nm64m5n2=2mn=2mn1.

г)
3p4q3(3pq3)1=3p4q313pq3=3p4q313pq3=3p4q33pq3=p3.

Подробный ответ:

а)

12a2b332a2b3=1232a22b33=34a0b0=34.

1. Начальное выражение.

Имеем выражение:

12a2b332a2b3.

2. Умножение чисел и переменных.

Для начала умножаем числители и знаменатели:

1232=34.

Теперь, для переменных a и b, применяем правила умножения степеней с одинаковыми основаниями. Мы имеем:

a2a2=a22=a0=1,b3b3=b33=b0=1.

3. Запишем результат.

После умножения чисел и упрощения степеней:

3411=34.

Ответ:

34.

б)

10x1y100.05x3y10=100.05x1+3y1010=0.5x2y20.

1. Начальное выражение.

Имеем выражение:

10x1y100.05x3y10.

2. Умножаем числовые множители.

Для числовых множителей:

100.05=0.5.

3. Умножаем степени переменных.

Теперь применим правила умножения степеней с одинаковыми основаниями.

  • Для x:

x1x3=x1+3=x2.

  • Для y:

y10y10=y1010=y20.

4. Запишем результат.

Итак, получаем:

0.5x2y20=0.5x2y20.

Ответ:

0.5x2y20.

в)

(2m3n)28m5n=1(2m3n)28m5n=14m6n28nm5=8nm64m5n2=2mn=2mn1.

1. Начальное выражение.

Имеем выражение:

(2m3n)28m5n.

2. Применяем степень к произведению.

Для начала возводим в степень 2 весь множитель (2m3n). Мы применяем правило степени к произведению:

(2m3n)2=22(m3)2n2=14m6n2.

Теперь перепишем выражение:

14m6n28m5n.

3. Умножение чисел и переменных.

Теперь умножим числа и переменные. Для чисел:

148=2.

Для переменных:

  • m6m5=m65=m1=m,
  • n2n1=n2+1=n1.

Итак, получаем:

2mn1=2mn1.

Ответ:

2mn1.

г)

3p4q3(3pq3)1=3p4q313pq3=3p4q313pq3=3p4q33pq3=p3.

1. Начальное выражение.

Имеем выражение:

3p4q3(3pq3)1.

2. Возводим в степень.

Для начала возводим (3pq3)1 в степень 1:

(3pq3)1=13pq3.

Теперь перепишем выражение:

3p4q313pq3.

3. Умножение чисел и переменных.

Умножаем числовые множители:

313=1.

Теперь переменные:

  • p4p1=p41=p3,
  • q3q3=q3+3=q0=1.

Итак, получаем:

p3.

Ответ:

p3.


Алгебра

Общая оценка
4.8 / 5
Комментарии
Другие предметы