ГДЗ по Алгебре 7 Класс Номер 573 Дорофеев, Суворова — Подробные Ответы
а) \(\left(\frac{2x}{5}\right)^2\)
б) \(\left(\frac{1}{x^4}\right)^5\)
в) \(\left(\frac{3}{2a}\right)^3\)
г) \(\left(-\frac{y^2}{3}\right)^3\)
д) \(\left(-\frac{1}{ab}\right)^2\)
е) \(\left(\frac{x^2y}{2}\right)^4\)
ж) \(\left(-\frac{ab}{c}\right)^5\)
з) \(\left(-\frac{3a}{4b}\right)^2\)
а) \(\left(\frac{2x}{5}\right)^2 = \frac{4x^2}{25}\)
б) \(\left(\frac{1}{x^4}\right)^5 = \frac{1}{x^{20}}\)
в) \(\left(\frac{3}{2a}\right)^3 = \frac{27}{8a^3}\)
г) \(\left(-\frac{y^2}{3}\right)^3 = -\frac{y^6}{27}\)
д) \(\left(-\frac{1}{ab}\right)^2 = \frac{1}{a^2b^2}\)
е) \(\left(\frac{x^2y}{2}\right)^4 = \frac{x^8y^4}{16}\)
ж) \(\left(-\frac{ab}{c}\right)^5 = -\frac{a^5b^5}{c^5}\)
з) \(\left(-\frac{3a}{4b}\right)^2 = \frac{9a^2}{16b^2}\)
а) \(\left(\frac{2x}{5}\right)^2 = \frac{(2x)^2}{5^2} = \frac{4x^2}{25}\)
б) \(\left(\frac{1}{x^4}\right)^5 = \frac{1^5}{(x^4)^5} = \frac{1}{x^{20}}\)
в) \(\left(\frac{3}{2a}\right)^3 = \frac{3^3}{(2a)^3} = \frac{27}{8a^3}\)
г) \(\left(-\frac{y^2}{3}\right)^3 = \frac{(-y^2)^3}{3^3} = -\frac{y^6}{27}\)
д) \(\left(-\frac{1}{ab}\right)^2 = \frac{(-1)^2}{(ab)^2} = \frac{1}{a^2b^2}\)
е) \(\left(\frac{x^2y}{2}\right)^4 = \frac{(x^2y)^4}{2^4} = \frac{x^8y^4}{16}\)
ж) \(\left(-\frac{ab}{c}\right)^5 = \frac{(-ab)^5}{c^5} = -\frac{a^5b^5}{c^5}\)
з) \(\left(-\frac{3a}{4b}\right)^2 = \frac{(-3a)^2}{(4b)^2} = \frac{9a^2}{16b^2}\)