Учебник по математике для 6-го класса авторов Дорофеева и Шарыгина — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.
ГДЗ по Математике 6 Класс Номер 209 Дорофеев, Шарыгин — Подробные Ответы
Даны расстояния от вершин параллелепипеда до его граней:
а) От вершины B до:
- передней грани — 6 см;
- нижней грани — 8 см;
- левой боковой грани — 4 см.
б) От вершины A до:
- задней грани — 6 см;
- правой боковой грани — 4 см;
- верхней грани — 8 см.
Подробное рассмотрение расстояний от вершин параллелепипеда до его граней:
а) Расстояния от вершины B:
- До передней грани — 6 см.
Это расстояние показывает, насколько далеко вершина B находится от передней грани параллелепипеда. В данном случае это 6 см, что говорит о длине ребра, перпендикулярного к передней грани, или о положении вершины относительно этой грани.
- До нижней грани — 8 см.
Расстояние до нижней грани равно 8 см, что обычно соответствует высоте параллелепипеда. Это значение показывает вертикальное расположение вершины B относительно основания.
- До левой боковой грани — 4 см.
Здесь указано расстояние от вершины B до левой боковой грани. Это значение связано с шириной параллелепипеда и положением вершины по ширине.
б) Расстояния от вершины A:
- До задней грани — 6 см.
Расстояние от вершины A до задней грани равно 6 см, что указывает на положение вершины по длине параллелепипеда, противоположное вершине B. - До правой боковой грани — 4 см.
Это расстояние показывает, насколько вершина A удалена от правой боковой грани, что связано с шириной фигуры и положением вершины. - До верхней грани — 8 см.
Расстояние до верхней грани равно 8 см — это высота параллелепипеда, аналогичная расстоянию от вершины B до нижней грани.