Учебник по математике для 6-го класса авторов Дорофеева и Шарыгина — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.
Что выделяет этот учебник среди других:
- Понятное изложение материала. Каждая тема объясняется простым и доступным языком, что облегчает понимание даже сложных понятий.
- Большое количество примеров и задач. Учебник предлагает разнообразные упражнения — от простых до более сложных, что помогает закрепить пройденный материал.
- Интерактивный подход. В книге есть задания, которые побуждают учеников к самостоятельному поиску решений и развитию творческого мышления.
- Связь с реальной жизнью. Многие задачи связаны с практическими ситуациями, что делает математику более живой и понятной.
- Разнообразие форм подачи информации. Здесь используются таблицы, схемы, иллюстрации, что помогает лучше усваивать материал и удерживать внимание учащихся.
ГДЗ по Математике 6 Класс Номер 1020 Дорофеев, Шарыгин — Подробные Ответы
Анализируем.
Покажите, что фигуры, изображённые на рисунке 12.20, равновелики.
Подсказка. Перекроите каждую фигуру в квадрат
Чтобы показать, что фигуры, изображённые на рисунке, равновелики, давайте проанализируем, как можно перекроить каждую фигуру в квадрат. Все фигуры имеют одинаковую площадь, а значит, их можно преобразовать в квадраты одинаковой площади, чтобы доказать их равновеликость.
1. Перекройка квадрата:
Площадь квадрата равна его стороне, и так как эта фигура уже квадрат, она не требует преобразования. Ее площадь будет равна S = a², где a — длина стороны.
2. Перекройка треугольника:
Площадь треугольника равна S = 1/2 * a * h, где a — основание, а h — высота. Треугольник можно разрезать на две части и перестроить в квадрат с равной площадью.
3. Перекройка прямоугольника:
Площадь прямоугольника равна S = a * b, где a и b — его стороны. Мы можем разрезать прямоугольник и перестроить его в квадрат с той же площадью.
4. Перекройка параллелограмма:
Площадь параллелограмма также равна S = a * h, где a — основание, а h — высота. Этот параллелограмм можно разрезать и перенести его части в форму квадрата с такой же площадью.
5. Перекройка ромба:
Площадь ромба равна S = d₁ * d₂ / 2, где d₁ и d₂ — диагонали ромба. Можно разрезать ромб по диагоналям и собрать части в квадрат.