Учебник «Математика. 5 класс», написанный выдающимися авторами А. Г. Дорофеевым и И. Ф. Шарыгиным, является одним из наиболее популярных и эффективных пособий для школьников. Этот учебник помогает не только освоить базовые математические навыки, но и развить логическое мышление, внимание и интерес к предмету. Благодаря своей структуре, ярким примерам и увлекательным задачам, он легко становится надежным помощником в изучении математики.
Особенности учебника:
- Понятная структура материала
Учебник логично разделен на главы, каждая из которых посвящена отдельной теме: арифметика, алгебраические выражения, геометрия и основы логики. Это позволяет учащимся постепенно углубляться в материал без перегрузки. - Практическая направленность
Авторы уделяют особое внимание применению математики в реальной жизни. Задачи часто связаны с повседневными ситуациями, что делает обучение более увлекательным и полезным. - Интерактивные задания
В книге встречаются задачи на построение, головоломки и упражнения, требующие нестандартного подхода. Это стимулирует творческое мышление и помогает ученикам не просто запоминать формулы, а понимать их суть. - Материал для разного уровня подготовки
Учебник подходит как для сильных учеников, так и для тех, кто только начинает осваивать основы математики. Задания варьируются от простых до более сложных, что позволяет каждому ученику работать в своем темпе. - Красочное оформление
Иллюстрации, таблицы и схемы делают материал более доступным и визуально привлекательным для школьников.
Почему стоит выбрать этот учебник?
Дорофеев и Шарыгин создали пособие, которое не только соответствует образовательным стандартам, но и вдохновляет учеников на изучение математики. Учебник учит не просто решать задачи, а мыслить аналитически, искать закономерности и применять знания в жизни. Его использование в образовательном процессе помогает школьникам сформировать прочную базу для дальнейшего изучения математики.
ГДЗ по Математике 5 Класс Номер 908 Дорофеев, Шарыгин, Суворова — Подробные Ответы
Первая бригада может выполнить задание за 9 дней, а вторая — за 12 дней. Первая бригада работала над выполнением этого задания 3 дня, потом вторая бригада закончила работу. За сколько дней было выполнено задание?
- Первая бригада выполняет 1/9 задания за день, за 3 дня она выполнила 3/9 = 1/3 задания.
- Осталось выполнить 1 — 1/3 = 2/3 задания.
- Вторая бригада выполняет 1/12 задания за день. Чтобы выполнить 2/3 задания, ей нужно (2/3) ÷ (1/12) = 8 дней.
- Общее время: 3 + 8 = 11 дней.
Ответ: 11 дней.
Условие задачи: Первая бригада может выполнить задание за 9 дней, а вторая – за 12 дней. Первая бригада работала над выполнением задания 3 дня, а затем вторая бригада завершила работу. Нужно найти, за сколько дней было выполнено всё задание.
Решение:
- Определим производительность первой бригады.
Если первая бригада выполняет задание за 9 дней, то за 1 день она выполняет 1/9 задания. - Определим производительность второй бригады.
Если вторая бригада выполняет задание за 12 дней, то за 1 день она выполняет 1/12 задания. - Найдём, какую часть задания выполнила первая бригада за 3 дня.
За 1 день первая бригада выполняет 1/9 задания. За 3 дня она выполнит:
3 × (1/9) = 3/9.
Сократим дробь:
3/9 = 1/3.Это значит, что первая бригада выполнила 1/3 задания за 3 дня. - Определим, какая часть задания осталась после работы первой бригады.
Всего задание составляет 1 (то есть 100%). После работы первой бригады осталось:
1 — 1/3 = 2/3.Это значит, что вторая бригада должна выполнить 2/3 задания. - Найдём, за сколько дней вторая бригада выполнит оставшуюся часть задания.
За 1 день вторая бригада выполняет 1/12 задания. Чтобы выполнить 2/3 задания, ей потребуется:
(2/3) ÷ (1/12).Деление дробей заменяем умножением на обратную дробь:
(2/3) ÷ (1/12) = (2/3) × (12/1) = 24/3 = 8.Это значит, что вторая бригада завершит оставшуюся часть задания за 8 дней.
- Найдём общее время выполнения задания.
Первая бригада работала 3 дня, а вторая – 8 дней. Общее время выполнения задания:
3 + 8 = 11 дней.Ответ: задание было выполнено за 11 дней.
Математика