Учебник «Математика. 5 класс», написанный выдающимися авторами А. Г. Дорофеевым и И. Ф. Шарыгиным, является одним из наиболее популярных и эффективных пособий для школьников. Этот учебник помогает не только освоить базовые математические навыки, но и развить логическое мышление, внимание и интерес к предмету. Благодаря своей структуре, ярким примерам и увлекательным задачам, он легко становится надежным помощником в изучении математики.
Особенности учебника:
- Понятная структура материала
Учебник логично разделен на главы, каждая из которых посвящена отдельной теме: арифметика, алгебраические выражения, геометрия и основы логики. Это позволяет учащимся постепенно углубляться в материал без перегрузки. - Практическая направленность
Авторы уделяют особое внимание применению математики в реальной жизни. Задачи часто связаны с повседневными ситуациями, что делает обучение более увлекательным и полезным. - Интерактивные задания
В книге встречаются задачи на построение, головоломки и упражнения, требующие нестандартного подхода. Это стимулирует творческое мышление и помогает ученикам не просто запоминать формулы, а понимать их суть. - Материал для разного уровня подготовки
Учебник подходит как для сильных учеников, так и для тех, кто только начинает осваивать основы математики. Задания варьируются от простых до более сложных, что позволяет каждому ученику работать в своем темпе. - Красочное оформление
Иллюстрации, таблицы и схемы делают материал более доступным и визуально привлекательным для школьников.
Почему стоит выбрать этот учебник?
Дорофеев и Шарыгин создали пособие, которое не только соответствует образовательным стандартам, но и вдохновляет учеников на изучение математики. Учебник учит не просто решать задачи, а мыслить аналитически, искать закономерности и применять знания в жизни. Его использование в образовательном процессе помогает школьникам сформировать прочную базу для дальнейшего изучения математики.
ГДЗ по Математике 5 Класс Номер 869 Дорофеев, Шарыгин, Суворова — Подробные Ответы
а)
- (3/4 + 1/6) = 11/12.
- (3/4 + 1/6) · 3 = 11/4.
- (5/6 — 1/2) = 1/3.
- (5/6 — 1/2) : 2/9 = 3/2.
- Сумма: 11/4 + 3/2 = 4 1/4.
Ответ: 4 1/4.
б)
- (1 1/5 + 2 3/10) = 7/2.
- (1 1/5 + 2 3/10) : 1/2 = 7.
- (6 3/4 — 2 2/3) = 49/12.
- (6 3/4 — 2 2/3) : 1 1/6 = 7/2.
- Сумма: 7 + 7/2 = 10 1/2.
Ответ: 10 1/2.
а) (3/4 + 1/6) · 3 + (5/6 — 1/2) : 2/9
Шаг 1. Найдём (3/4 + 1/6).
Приведём дроби к общему знаменателю. Общий знаменатель для 4 и 6 — 12.
3/4 = 9/12, 1/6 = 2/12.
Сложим:
3/4 + 1/6 = 9/12 + 2/12 = 11/12.
Шаг 2. Умножим (3/4 + 1/6) на 3.
(3/4 + 1/6) · 3 = 11/12 · 3 = 33/12 = 11/4.
Шаг 3. Найдём (5/6 — 1/2).
Приведём дроби к общему знаменателю. Общий знаменатель для 6 и 2 — 6.
1/2 = 3/6.
Вычтем:
5/6 — 1/2 = 5/6 — 3/6 = 2/6 = 1/3.
Шаг 4. Разделим (5/6 — 1/2) на 2/9.
1/3 : 2/9 = 1/3 · 9/2 = 9/6 = 3/2.
Шаг 5. Сложим результаты.
(3/4 + 1/6) · 3 + (5/6 — 1/2) : 2/9 = 11/4 + 3/2.
Приведём дроби к общему знаменателю. Общий знаменатель для 4 и 2 — 4.
3/2 = 6/4.
Сложим:
11/4 + 6/4 = 17/4 = 4 1/4.
Ответ на пункт а: 4 1/4.
б) (1 1/5 + 2 3/10) : 1/2 + (6 3/4 — 2 2/3) : 1 1/6
Шаг 1. Найдём (1 1/5 + 2 3/10).
Приведём смешанные числа к неправильным дробям:
1 1/5 = 6/5, 2 3/10 = 23/10.
Приведём дроби к общему знаменателю. Общий знаменатель для 5 и 10 — 10.
6/5 = 12/10.
Сложим:
6/5 + 23/10 = 12/10 + 23/10 = 35/10 = 7/2.
Шаг 2. Разделим (1 1/5 + 2 3/10) на 1/2.
7/2 : 1/2 = 7/2 · 2/1 = 14/2 = 7.
Шаг 3. Найдём (6 3/4 — 2 2/3).
Приведём смешанные числа к неправильным дробям:
6 3/4 = 27/4, 2 2/3 = 8/3.
Приведём дроби к общему знаменателю. Общий знаменатель для 4 и 3 — 12.
27/4 = 81/12, 8/3 = 32/12.
Вычтем:
27/4 — 8/3 = 81/12 — 32/12 = 49/12.
Шаг 4. Разделим (6 3/4 — 2 2/3) на 1 1/6.
Приведём 1 1/6 к неправильной дроби:
1 1/6 = 7/6.
49/12 : 7/6 = 49/12 · 6/7 = 294/84 = 49/14 = 7/2.
Шаг 5. Сложим результаты.
(1 1/5 + 2 3/10) : 1/2 + (6 3/4 — 2 2/3) : 1 1/6 = 7 + 7/2.
Приведём к общему знаменателю. Общий знаменатель для 1 и 2 — 2.
7 = 14/2.
Сложим:
14/2 + 7/2 = 21/2 = 10 1/2.
Ответ на пункт б: 10 1/2.
Математика