1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Дорофеев 9 Класс по Алгебре Шарыгин Учебник 📕 Суворова- Все Части
Алгебра
9 класс учебник Дорофеев
9 класс
Тип
ГДЗ, Решебник.
Автор
Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. и др.
Год
2022.
Издательство
Просвещение.
Описание

Учебник по Алгебре для 9-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.

ГДЗ по Алгебре 9 Класс Остальные Задания Для Старого Учебника(2019) Номер 795 Дорофеев, Суворова — Подробные Ответы

Задача

Ребята проводили опыты по подбрасыванию монеты. Из 100 бросков орёл выпал 46 раз, решка — 54 раза. Ребята поспорили: что вероятнее при следующем броске — появление орла или решки?
«Вероятнее появление орла, — сказал первый, — ведь до этого эксперимента он выпадал реже, чем решка, значит, теперь должен выпадать чаще».
«Вероятнее появление решки, — сказал второй, — раз она выпадала чаще, то и будет выпадать чаще».
«Мы знаем, что появление орла и решки в каждом эксперименте равновероятно, — сказал третий, — и вероятность появления орла или решки одинакова в 101-м опыте, так же как в первом или любом другом».
Согласны ли вы с кем-нибудь из участников спора и почему?

Краткий ответ:

1) Исходя из представленного эксперимента, можно заключить, что статистически выпадение орла менее вероятно, чем выпадение решки: Po=46100=0,46=46%P_o = \frac{46}{100} = 0,46 = 46\% и Pp=54100=0,54=54%;P_p = \frac{54}{100} = 0,54 = 54\%;

2) Однако, число повторений было недостаточно большим, и на самом деле вероятность выпадения и орла, и решки одинакова и равна 50% (одно из двух возможных состояний монеты);

Ответ: согласен с третьим утверждением.

Подробный ответ:

1) Рассмотрим эксперимент, где монету подбрасывали 100 раз и фиксировали результаты — орёл или решка. Было получено: орёл выпал 46 раз, решка выпала 54 раза. Чтобы найти экспериментальные вероятности, делим количество появлений каждого события на общее число испытаний.

Вероятность выпадения орла равна:
Po=46100P_o = \frac{46}{100}.
Выполним деление: 46100=0,46\frac{46}{100} = 0,46. В процентах это значение составляет 0,46100%=46%0,46 \cdot 100\% = 46\%. Это означает, что согласно эксперименту монета показывает орла в 46 случаях из 100.

Вероятность выпадения решки равна:
Pp=54100P_p = \frac{54}{100}.
Выполним деление: 54100=0,54\frac{54}{100} = 0,54. В процентах это 0,54100%=54%0,54 \cdot 100\% = 54\%. Это означает, что решка выпадает чаще — в 54 случаях из 100.

Таким образом, на основании эксперимента можно заключить, что выпадение орла статистически менее вероятно, чем выпадение решки, потому что Po=0,46P_o = 0,46, а Pp=0,54P_p = 0,54.

2) Однако важно учитывать, что число опытов — всего 100. Для теории вероятностей это малое количество, поэтому результаты эксперимента могут искажать реальную вероятность. В действительности монета является симметричной, и для неё справедливо равенство: вероятность орла равна вероятности решки.

Теоретически возможны только два исхода: «орёл» и «решка». Они равновероятны, поэтому истинные вероятности равны:
Po=12=0,5=50%P_o = \frac{1}{2} = 0,5 = 50\%,
Pp=12=0,5=50%P_p = \frac{1}{2} = 0,5 = 50\%.

Это означает, что если бы количество бросков стремилось к бесконечности, относительные частоты стремились бы к этим вероятностям. То есть при очень большом числе испытаний орёл и решка выпадали бы одинаково часто — примерно по половине всех случаев.

Ответ: согласен с третьим утверждением.



Общая оценка
3.7 / 5
Комментарии
Другие предметы