Учебник по Алгебре для 9-го класса авторов Дорофеева и Суворова — это современное и продуманное пособие, которое помогает школьникам не только освоить базовые математические понятия, но и развить логическое мышление и умение применять знания на практике. Книга построена так, чтобы учебный материал был доступен и интересен даже тем, кто раньше испытывал трудности с математикой.
ГДЗ по Алгебре 9 Класс Номер 545 Дорофеев, Суворова — Подробные Ответы
Два велосипедиста одновременно выехали из посёлка в город, расстояние до которого 30 км. Скорость одного велосипедиста была на 6 км/ч больше скорости другого, и на каждые 800 м он затрачивал на 1 мин 20 с меньше, чем второй велосипедист. Сколько времени затратил на путь из посёлка в город велосипедист, который ехал с большей скоростью?
1) Пусть км/ч — скорость первого велосипедиста, тогда:
км/ч — скорость второго велосипедиста;
ч — время, затраченное на весь путь первым велосипедистом;
ч — время, затраченное на весь путь вторым велосипедистом;
2) Время, на которое отставал первый велосипедист каждые м:
мин с (ч);
3) Время, на которое отставал первый велосипедист на всем пути:
(ч);
4) Составим и решим уравнение:
тогда:
и
5) Скорость не может быть отрицательной:
значит (км/ч);
6) Время, затраченное на весь путь вторым велосипедистом:
ч мин;
Ответ: час минут.
Пусть км/ч — скорость первого велосипедиста, тогда:
км/ч — скорость второго велосипедиста. Это означает, что второй велосипедист едет на 6 км/ч быстрее первого.
ч — время, затраченное на весь путь первым велосипедистом. Время пути первого велосипедиста вычисляется по формуле , где км — это расстояние, которое преодолевает первый велосипедист, а км/ч — его скорость.
ч — время, затраченное на весь путь вторым велосипедистом. Аналогично, время пути второго велосипедиста вычисляется по формуле , где км — это расстояние, которое преодолевает второй велосипедист, а км/ч — его скорость.
Время, на которое отставал первый велосипедист каждые м:
Время отставания каждого велосипедиста можно рассчитать, зная, что каждый отставал на 800 м. Для этого мы разделим 1 минуту и 20 секунд на общее количество времени. Переводим 1 мин 20 с в часы:
Время, на которое отставал первый велосипедист на всем пути:
Для вычисления времени отставания первого велосипедиста на всем пути, разделим общий путь м на длину пути м и умножим на время отставания:
Составим и решим уравнение:
Уравнение для расчета времени отставания:
Умножаем обе части на , чтобы избавиться от дробей:
Раскрываем скобки и упрощаем:
Переносим все элементы на одну сторону уравнения:
Упрощаем:
Разделим обе части на 5:
Рассчитаем дискриминант для решения квадратного уравнения :
Дискриминант для уравнения вычисляется по формуле:
где , , и . Подставляем значения:
Теперь находим корни уравнения с использованием формулы для корней квадратного уравнения:
Скорость не может быть отрицательной, поэтому отклоняем значение . Оставляем положительное значение:
Время, затраченное на весь путь вторым велосипедистом:
- Для вычисления времени второго велосипедиста используем его скорость км/ч:
Ответ: час минут.