1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ Дорофеев 7 Класс по Алгебре Шарыгин Учебник 📕 Суворова- Все Части
Алгебра
7 класс учебник Дорофеев
7 класс
Тип
ГДЗ, Решебник.
Автор
Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. и др.
Год
2020.
Издательство
Просвещение.
Описание

Учебник «Алгебра. 7 класс» авторов Дорофеев Г.В. и Суворова С.Б. — это современное пособие, которое помогает школьникам сделать первые серьезные шаги в изучении алгебры. Книга рассчитана на широкий круг учеников и отличается продуманной структурой, доступным языком и большим количеством разнообразных задач.

ГДЗ по Алгебре 7 Класс Номер 751 Дорофеев, Суворова — Подробные Ответы

Задача

ДОКАЗЫВАЕМ

Докажите, что если к произведению двух последовательных натуральных чисел прибавить большее из них, то получится квадрат большего числа.

Краткий ответ:

пусть \( x \) и \( x + 1 \) — последовательные натуральные числа

тогда \( x(x + 1) + (x + 1) = (x + 1)(x + 1) = (x + 1)^2 \)

следовательно, к произведению двух последовательных чисел, прибавленное большее число, равно квадрату большего числа

верно

Подробный ответ:

пусть \( x \) и \( x + 1 \) — это два последовательных натуральных числа, где \( x + 1 \) — большее из них. Мы рассматриваем произведение этих чисел, то есть \( x(x + 1) \). Далее к этому произведению прибавляем большее число \( x + 1 \).

если записать это выражение, то получится \( x(x + 1) + (x + 1) \). заметим, что в обеих частях есть общий множитель \( x + 1 \), его можно вынести за скобки: \( (x + 1)(x + 1) \). это выражение равно квадрату числа \( x + 1 \), то есть \( (x + 1)^2 \).

следовательно, прибавляя к произведению двух последовательных натуральных чисел большее из них, мы получаем квадрат этого большего числа. это доказывает, что исходное утверждение верно и соответствует свойствам натуральных чисел и алгебраическим преобразованиям.



Общая оценка
3.8 / 5
Комментарии
  • 🙂
  • 😁
  • 🤣
  • 🙃
  • 😊
  • 😍
  • 😐
  • 😡
  • 😎
  • 🙁
  • 😩
  • 😱
  • 😢
  • 💩
  • 💣
  • 💯
  • 👍
  • 👎
В ответ юзеру:
Редактирование комментария

Оставь свой отзыв 💬

Комментариев пока нет, будьте первым!

Другие предметы